A perspective on underwater photosynthesis in submerged terrestrial wetland plants

نویسندگان

  • Timothy D. Colmer
  • Anders Winkel
  • Ole Pedersen
چکیده

BACKGROUND AND AIMS Wetland plants inhabit flood-prone areas and therefore can experience episodes of complete submergence. Submergence impedes exchange of O(2) and CO(2) between leaves and the environment, and light availability is also reduced. The present review examines limitations to underwater net photosynthesis (P(N)) by terrestrial (i.e. usually emergent) wetland plants, as compared with submerged aquatic plants, with focus on leaf traits for enhanced CO(2) acquisition. SCOPE Floodwaters are variable in dissolved O(2), CO(2), light and temperature, and these parameters influence underwater P(N) and the growth and survival of submerged plants. Aquatic species possess morphological and anatomical leaf traits that reduce diffusion limitations to CO(2) uptake and thus aid P(N) under water. Many aquatic plants also have carbon-concentrating mechanisms to increase CO(2) at Rubisco. Terrestrial wetland plants generally lack the numerous beneficial leaf traits possessed by aquatic plants, so submergence markedly reduces P(N). Some terrestrial species, however, produce new leaves with a thinner cuticle and higher specific leaf area, whereas others have leaves with hydrophobic surfaces so that gas films are retained when submerged; both improve CO(2) entry. CONCLUSIONS Submergence inhibits P(N) by terrestrial wetland plants, but less so in species that produce new leaves under water or in those with leaf gas films. Leaves with a thinner cuticle, or those with gas films, have improved gas diffusion with floodwaters, so that underwater P(N) is enhanced. Underwater P(N) provides sugars and O(2) to submerged plants. Floodwaters often contain dissolved CO(2) above levels in equilibrium with air, enabling at least some P(N) by terrestrial species when submerged, although rates remain well below those in air.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Open access – Invited review THIS ARTICLE IS PART OF A SPECIAL ISSUE ENTITLED ‘FLOODING STRESS’ A perspective on underwater photosynthesis in submerged terrestrial wetland plants

Background and aims Wetland plants inhabit flood-prone areas and therefore can experience episodes of complete submergence. Submergence impedes exchange of O2 and CO2 between leaves and the environment, and light availability is also reduced. The present review examines limitations to underwater net photosynthesis (PN) by terrestrial (i.e. usually emergent) wetland plants, as compared with subm...

متن کامل

Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity.

BACKGROUND Flooding causes substantial stress for terrestrial plants, particularly if the floodwater completely submerges the shoot. The main problems during submergence are shortage of oxygen due to the slow diffusion rates of gases in water, and depletion of carbohydrates, which is the substrate for respiration. These two factors together lead to loss of biomass and eventually death of the su...

متن کامل

Photosynthetic consequences of phenotypic plasticity in response to submergence: Rumex palustris as a case study.

Survival and growth of terrestrial plants is negatively affected by complete submergence. This is mainly the result of hampered gas exchange between plants and their environment, since gas diffusion is severely reduced in water compared with air, resulting in O2 deficits which limit aerobic respiration. The continuation of photosynthesis could probably alleviate submergence-stress in terrestria...

متن کامل

Underwater Photosynthesis and Internal Aeration of Submerged Terrestrial Wetland Plants

Submergence impedes plant gas exchange with the environment. Survival depends upon internal aeration to provide O2 throughout the plant body, although short-term anoxia can be tolerated. During nights, plants rely on O2 entry from the floodwater and pO2 in roots declines so that some tissues become severely hypoxic or even anoxic. Underwater photosynthesis is the main daytime O2 source and also...

متن کامل

Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods

We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this sele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011